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An asymptotic method permitting us to obtain the solution in the form of simple formu-
1as for large values of some characteristic dimensionless parameter is used to investigate
the problem of steady vibrations of a plane with a finite slit, Computational formulas
are presented to determine the function characterizing the displacement of points of the
slit edges, and the critical value of stress, A numerical investigation of the results ob-
tained is presented,

The plane problem of elasticity theory concerning the steady vibrations of a plane
with a slit of length 2a is considered, a normal toad oy = — g4 - ¢, cos (wt) {(where
go > qy > 0, ¢t is the time) is applied to the slit edges for | = | < a, y = 0, This prob-
lem has been investigated earlier in [1], An asymptotic method developed in [2] is used
below for the solution, This method permits obtaining the solution of the problem under
consideration in the form of simple formulas for large values of the parameter }, =(G/p)/*(wa)~!
(where p is the density,and & is the shear modulus of the plane).

Let us seek the function wy, (=, 0), | | < a characterizing the displacement of points
of the slit edges in the following form :

uy, = (1 —v)G-1q0 Va¥ — 2t + Re {y (z) €%} )

Here v is the Poisson’s ratio, and the first member, corresponding to the case ¢, = 0, is
the known solurion of the Griffith problem for a plane with a crack of length Ze towhose
edges a normal load o, = — ¢, is applied, The following integral equation can be ob-
tained to determine the function 7 () by using operational calculus methods (the kemnel
Q (%) is understood in the sense of generalized functions):
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Using the integral representation and recursion formulas for the Hankel function #,®(z)
[3], the kemel (4) can be represented as follows:
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@ (r) — [sﬁH‘” (eh) — HP (B)] — -—1—& HP (eh) dh}

Taking account of the series expansions of cylinder functions [3], we find from (6) (¢, =
— In 2, where C is the Euler constant [3]):
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Let us insert Q (k) in the form (7) into (2), and after transformations we obtain
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Applying the inversion formula to the singular integral equation (8), we obtain an integ-
ral equation of the second kind in the function g (r)
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Taking account of (1), (3) and the obvious condition uy (e, 0) = 0, it is easy to see
that P equals zero, Let us seek the solunon of (9) as follows:

? ()= Z Z P () A 2”111 A (11)
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Inserting ¢ (r) in the form (11) into the left and right sides of (9) and equating the ex-
pressions for identical powers of A and In Aonbothsides of the relationship obtained by this
means, we arrive at the following infinite system of integral equations to determine the
functions Ppm (r) ¢
(1 —_ 'V) q r
Poo (1) = G -V'—""'i )
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Pr(r)= Sq)oo(l’)(z'—-z)[bo—}-doln]r-—zndf
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do S Vi=z#

Qu(r)=— Y P clzg Qu{t){t—z)dt etc,
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Omitting the intermediate computations on (12), let us present the expression determin-
ing the function @ (r) (the calculations were performed for v = 0.3)

90 =L~ 190+ ) 13)

Q, (1) == 1 — A2 (0.3679 r2—0.8475—0.3679 In ) — A% (—0.03129 r* L
0.3014 r — 0.1337—In A (—0.1877 7 -+ 0.5431) — 0.1353 In® ) - O (A-% In 3))
Qs (r) = —0.5778 A-2 — 3—* (—0.2949 r*—0.8060 -1 0.4251 In &) 4+ O (A% In? A)

From (13) and (3) we obtain
' d —vyqz x i x )]
T Ve [ () + oo (- (14)

The connection between the length of the crack and the load applied to the slit edges
is determined by the formula [1]
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g oz o4 Here K, is the critical stress intensity factor, In-
Fig, 1 serting y, in the form (1) and taking account of
{14) and (16), we obtain

K= Van go {t — % [ (1) cos @f + Qs (1) sin wt]} an

Substituting the maximum value of & ; into (15), we find
g0 (1 + %Qy) = K, (an)™"hs (18)
X=a1/q Q= [Q2 1)+ Q2 1)

From (1) and (14) we determine the function uy (2, 0) for |z | < g

u, (2, 0) =01 =) goG1 V& 22 (1 — ) [Qa( )cosmi+§34( )sinmt_} (19)

Qj (r) = 1 — A-30.1226 r®—0.5723—0.3679 In &) — A% (— 0.006258 4
{0.09212 4~ 0.06258 In X} r* + 0.05052—0.3879 In A — 0.1353 In? &) O (A8 In® )
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Qs (r) = —0.5778 A-2 — A~4 (—0.09830 2 - 0.6093 - 0.4251 1n X) I+ O (A~% [n® })

We obtain the function characterizing the maximum displacements of points of the

slit edges u, () from (19)
Ue () = (1 — v) qoG-1 V a2 — 22 {1 + % [Qs? (a/a) + Qu? (x/a)]"%} (20)
As © — 0 (A — oo) we obtain the solution of the corresponding static problem from
(18) and (20),
As computations have shown, the formulas (17)—(20) obtained can be used in practice
for 2 < A < co. The solid curves presented in Figs, 1—3 correspond to the value % =
0,25, and the dashes correspond to x = 6.5, A graph of the function
14-Q.x Ko wa _ ( & )‘h
Hw) = 17 “nltn Vi (!l—- a o a=\7 )
is presented in Fig, 1,
The dependence of the quantity g, / K7, on half the slit length « is presented in Fig, 2,

Values of the quantity ¢ are given in cm,

a7
_g,,__“ while the values of o / K, are given in
Kie \\ (cm) =Y, The upper solid and the upperdashed
a6 \ curves correspond to the static case @ = 0.
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quency 8x10%sec-!. For « < 0.5 all the solid and dashed curves practically agree
with the corresonding curves for @ = 0. The dependence U = [(1 — v} g, G-1a]~1 w,(z)
is presented in Fig, 3 for p =0 (lower solid and lower dashed curves) and u =20,5 (re-
maining curves), It was assumed in the computations that ¢; = 3,2 x10° m/sec,
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